
Initial Submission
OMG’s Finance DTF RFP 4

General Ledger Facility

An initial, combined submission from:

Stanford Software International Ltd and the OMG Domain Contributing Members of the European
Union’s COMPASS Project; Economica AS and Real Objects Ltd.

OMG General Ledger Facility

Revision 1.1

July 3rd, 1998

OMG DTC Document finance/98-07-02

 OMG General Ledger Facility

2

Acknowledgements

The submitters wish to formally acknowledge and express their gratitude to the European
Commission for its support. Without the support of the European Commission, this project would
not have been possible. The following individuals and organisations provided significant
contributions to the combined submission: Jack Hassall, John Eaton, Gary Gray and Mike Wilcock
of Stanford Software International; Eric Leach, ELM Ltd; Tom Mowbray, Blueprint Technologies
Inc; Arne-Jorgen Berre, Tor Neple and Anton Landmark of SINTEF; Roger Barnett, Adrian St.
John, Real Objects Ltd; Morten Jacobsen, Amund Aarsten and Ole Petter Ovre of Economica and
Colin Mason and Keith Thomson of The Software Box Ltd.

Special Thanks

The following list of individuals is extensive and is naturally incomplete, however, in varying
degrees of proportionality, special thanks must go to the following individuals from all over the
world without whose support and encouragement over the years, this submission would not have
been possible: Alan O’ Callaghan, Andrew Rosamond, Andrew Watson, Anthony Kaiser, Beth
Grossman, Dr. Bhavani Thuraisingham, Bill Brown, Bill Cox, Bill Hatch, Bill Heartha, Bill
Hoffman, Bryan Wood, Cheryl Bisonette, Cappie Jarboe, Carol Tyson, Cathy Batzer, Cheryl
Rocheleau, Chris Sluman, Chris Stone, Chuck Alvarez, Chuck Lockard, Cory Casanave, Dai
Clegg, Dan Franz, Dave Curtis, Dave Jack, Dave Zenie, David Newman, David Guest, Don
Shepard, Doug Moss, Ed Cobb, Eric Castain, Erlund Stav, Fred Cummins, Fred Waskiewicz, Gary
Word, Gene Jarboe, Geoff Cave, Gillian Lefel, Graham Lea, Haim Kilov, Henry Rothkopf, Hilary
Khan, Hiroki Kamata, Huet Landry, Iain Houston, Ian Corden, Ian Hugo, Jean-Marie Chauvet, Jim
Rye, Joe DiLiberto, John Wieler, Jon Siegel, Junishi Suzuki, Jurgen Boldt, Karen Oulton, Karen
Wastling, Kate Brown, Kate Mowbray CPA, Keith Oulton, Ken Kolence, Ken McCoy, Kevin
Schipani, Kevin Tyson, Kurt Ramin, Larry Gray, Larry Johnson, Lydia Bennett, Mark Holtom,
Mark Ryland, Martin Chapman, Martin Fowler, Melony Katz, Michael Guttman, Nick Langley,
Norm Eko, Pat Elizondo, Pat Mallet, Peter Marshall, Polar Humen, Raphael Malveau, Rich
Limieux, Richard Carr, Richard Lowrie, Dr. Richard Soley, Robert Mickley, Roberto Zicari, Rod
Newing, Ron Zahavi, Ross Mayne, Roz Sluman, Rudi Reiss, Samit Khosla, Shel Sutton, Steve
Macnamara, Steve van Noort, Steve Turner, Steve Vinowski, Steve Wolfe, Sumit Ray, Thelma
Leach, Tom Kilburn, Tom Rutt, Dr. Tom Mowbray, Tony Ackroyd, Tony Caballero, Toshiaki
Kurokawa, Vicki Chadwick and Yllona Richardson.

The organisations represented by the above list of individuals include: ACORD, Apptest, AT
Kearney, AT&T Lucent, Barclays Bank, BEA Systems, Blackwatch Technologies, Broadcom,
Canadian Imperial Bank of Commerce, Citicorp, Concept5 Technologies, Cyborg Systems, Data
Access Technologies, De Montfort University, DEC, US Defence Information Systems Agency
Center for Standards, DNS Technologies, Ecsoft, EDS, ELM, Enterprise Engineering Associates,
Fannie-Mae, Genesis Development Corporation, Heterodox, IBM, ICL Object Software
Laboratories, International Accounting Standards Committee, Iona Technologies, J.P. Morgan,
Kolence Associates, Level-7, LogON Technology, Macqaurie Bank, Merrill Lynch, Microsoft,
MITRE, MSC, US National Industrial Information Infrastructure Protocols (NIIIP) Consortium, US
National Security Agency, Neuron Data, Novell, Object Management Group,

 OMG General Ledger Facility

3

Open-IT, Oracle, Protocol Systems, Real Objects, Restore Computer Services, Sematech, SINTEF,
Soken Planning, Tandem, Technium, The Objective Technology Group, Traveller’s Group,
University of Manchester, University of Sheffield and Wells Fargo Bank.

Copyright 1998 Stanford Software International Ltd
Copyright 1998 SINTEF AS
Copyright 1998 Real Objects Ltd.
Copyright 1998 Economica AS
Copyright 1998 Blueprint Technologies, Inc.
Copyright 1998 The Software Box Ltd

The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc. (OMG)
for world-wide distribution of this document or any derivative works thereof, so long as the OMG reproduces
the copyright notices and the below paragraphs on all distributed copies. The material in this document is
submitted to the OMG for evaluation. Submission of this document does not represent a commitment to
implement any portion of this specification in the products of the submitters. WHILE THE INFORMATION IN
THIS PUBLICATION IS BELIEVED TO BE ACCURATE THE COMPANIES LISTED ABOVE MAKE NO
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The
companies listed above shall not be liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance or use of this material. The information contained in this
document is subject to change without notice. This document contains information which is protected by
copyright. All Rights Reserved. Except as otherwise provided herein, no part of this work may be reproduced
or used in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems - without the permission of one of the copyright owners. All
copies of this document must include the copyright and other information contained on this page. The copyright
owners grant member companies of the OMG permission to make a limited number of copies of this document
(up to fifty copies) for their internal use as part of the OMG evaluation process. RESTRICTED RIGHTS
LEGEND. Use, duplication, or disclosure by government is subject to restrictions set forth in subdivision (c) (1)
(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013.

 OMG General Ledger Facility

4

Table Of Contents

SECTION I: GENERAL LEDGER (GL) FACILITY OVERVIEW.. 6

GL FACILITY DESCRIPTION.. 6
GL FACILITY STRUCTURE.. 6
GL INTERFACE SUMMARY ... 7

SECTION II: MODULE FDGENERALLEDGER .. 9

INCLUDED OMG/ISO IDL FILES.. 9
MODULE FDGENERALLEDGER... 9
GL FACILITY INVARIANTS ... 9
GL FACILITY ENVIRONMENT CONTRACT... 10
GL FORWARD DECLARATIONS... 11
GL TYPEDEFS... 11
GL BASIC TYPES.. 11
GL ACCOUNT INFORMATION.. 12
GL PERIODS AND TRANSACTION INFORMATION... 13
GL DATA TYPE ARGUMENT EXCEPTIONS.. 15

SECTION III: GL PROFILE INTERFACE... 17

GLPROFILE OPERATION: GET_DEFAULT_COMPANY_NAME ... 17
GLPROFILE OPERATION: GET_GL_COMPANY_NAMES... 18
GLPROFILE OPERATION: GET_CURRENT_SYSTEM_DATE ... 19
GLPROFILE OPERATION: GENERAL_LEDGER_OPEN... 20
GLPROFILE OPERATION: BOOK_KEEPING... 21
GLPROFILE OPERATION: RETRIEVAL ... 22
GLPROFILE OPERATION: INTEGRITY .. 23
GLPROFILE OPERATION: ACCOUNT_LIFECYCLE... 24
GLPROFILE OPERATION: FACILITY _LIFECYCLE... 25
GLPROFILE OPERATION: GET_CLIENT_COMPANY_NAME .. 26
GLPROFILE OPERATION: GET_CURRENT_PERIOD... 27
GLPROFILE OPERATION: GET_GLREPORT_CODES... 28
GLPROFILE OPERATION: GET_DEFAULT_CURRENCY... 29
GLPROFILE OPERATION: GET_KNOWN_CURRENCIES... 30
GLPROFILE OPERATION: GET_DIMENSION_NAMES.. 31
GLPROFILE OPERATION: QUIT.. 32

SECTION IV: GLBOOKKEEPING INTERFACE ... 33

GLBOOKKEEPING OPERATION: POST... 33
GLBOOKKEEPING OPERATION: POST_BATCH .. 34

SECTION V: GLRETRIEVAL INTERFACE ... 35

GLRETRIEVAL OPERATION: NUMBER_OF_ACCOUNTS.. 35
GLRETRIEVAL OPERATION: GET_ACCOUNT_INFO ... 36
GLRETRIEVAL OPERATION: GET_ALL_ACCOUNT_INFO... 37
GLRETRIEVAL OPERATION: GET_ACCOUNT... 38
GLRETRIEVAL OPERATION: GET_MULTIPLE_ACCOUNTS... 39
GLRETRIEVAL OPERATION: GET_ACCOUNTS_FROM_GLREPORTING_CODE.. 40
GLRETRIEVAL OPERATION: GET_CONTROL_ACC_INFO... 41
GLRETRIEVAL OPERATION: NUMBER_OF_CURRENT_TRANSACTIONS.. 42
GLRETRIEVAL OPERATION: GET_TRANSACTION_INFO .. 43
GLRETRIEVAL OPERATION: GET_MULTIPLE_TRANSACTION_INFO... 44
GLRETRIEVAL OPERATION: GET_CURRENT_HISTORY_RANGE... 45
GLRETRIEVAL OPERATION: NUMBER_OF_HISTORY_TRANSACTIONS... 46
GLRETRIEVAL OPERATION: GET_MULTIPLE_TRANSACTIONS.. 47
GLRETRIEVAL OPERATION: GET_CURRENT_TRANSACTIONS... 48

SECTION VI: GLACCOUNTLIFECYCLE INTERFACE .. 49

 OMG General Ledger Facility

5

GLACCOUNTLIFECYCLE OPERATION: CREATEACCOUNT... 49
GLACCOUNTLIFECYCLE OPERATION: REMOVEACCOUNT.. 50
GLACCOUNTLIFECYCLE OPERATION: MODIFY_ACCOUNT... 51
GLACCOUNTLIFECYCLE OPERATION: CLOSE_ACCOUNTING_PERIOD.. 52
GLACCOUNTLIFECYCLE OPERATION: CLOSE_ACCOUNTING_YEAR ... 53

SECTION VII: GLINTEGRITY INTERFACE ... 54

GLINTEGRITY OPERATION: GET_DYNAMIC _SELECTION... 54
GLINTEGRITY OPERATION: CHECK_INTEGRITY.. 55

SECTION VIII: GLFACILITYLIFECYCLE INTERFACE..56

GLFACILITY LIFECYCLE OPERATION: GET_COMPANY_ATTRIBUTES .. 56
GLFACILITY LIFECYCLE OPERATION: CREATE_COMPANY_CHART_OF_ACCOUNTS.. 57
GLFACILITY LIFECYCLE OPERATION: EXPUNGE_COMPANY ... 58
GLFACILITY LIFECYCLE OPERATION: SET_GLREPORT_CODES.. 59
GLFACILITY LIFECYCLE OPERATION: SET_DEFAULT_CURRENCIES.. 60
GLFACILITY LIFECYCLE OPERATION: SET_KNOWN_CURRENCIES.. 61

APPENDIX A - REQUIREMENTS COMPLIANCE .. 62

RFP REQUIREMENTS FOR THE GENERAL LEDGER FACILITY .. 62
SPECIFIC MANDATORY REQUIREMENTS... 62
SPECIFIC OPTIONAL REQUIREMENTS.. 64
COMMON MANDATORY REQUIREMENTS.. 66
PROOF OF CONCEPT STATEMENT.. 68
SERVICE DEPENDENCIES AND RELATIONSHIPS... 68
RELATIONSHIP TO CORBA .. 70
RELATIONSHIP TO THE OMG OBJECT MODEL.. 70

APPENDIX B - GENERAL LEDGER FACILITY IDL.. 71

APPENDIX C - REFERENCES... 76

 OMG General Ledger Facility

6

Section I: General Ledger (GL) Facility Overview

GL Facility Description

The OMG General Ledger Facility defines the interfaces, and their semantics, that are required to
enable interoperability between General Ledger systems and accounting applications, as well as
other distributed objects and applications for accounting purposes.

The business accounting function (of which, General Ledger is the common core) is a statutory
requirement for all commercial organisations and individual proprietorships. The vast majority of
General Ledger systems are proprietary, non-standard and non-interoperable, even though the
underlying accounting concepts have been stable for over 500 years. Applications such as Payroll
systems and Report Writers need to interoperate with General Ledger systems, however, this is
currently a tedious, difficult, and error prone task, due to the general lack of technology
standardisation. Additionally, many other accounting applications including Accounts Payable,
Accounts Receivable, Inventory, Sales, Purchase Order Processing, and Invoicing, also need to
interoperate with General Ledger systems. Standard interfaces to General Ledger would allow the
user to mix and match different vendors’ implementations of accounting applications, and enable
interoperability with other kinds of applications.

“Monetary calculation is the guiding star of action under the social system of
division of labour. It is the compass of the man embarking upon production ...
[It] is the main vehicle of planning and acting in the social setting of a society
of free enterprise directed and controlled by the market and its prices ... Our
civilisation is inseparably linked with our methods of economic calculation. It
would perish if we were to abandon this most precious intellectual tool of
acting. Goethe was right in calling book-keeping by double entry ‘one of the
finest inventions of the human mind’.” - Ludwig von Mises, Human Action: A
Treatise on Economics, Regnery, 1963.

GL Facility Structure

The General Ledger (GL) Facility specifies interfaces that encapsulate distributed object
frameworks implementing Accounting General Ledgers, these GL's are conformant with
international accounting standards for double entry book-keeping. The GL interfaces comprise a
framework (in the object-oriented sense), that supports the implementation of accounting client
applications, for example: accounts payable, accounts receivable, payroll, and so forth. The
architectural intention is to facilitate the convenient implementation of interoperable accounting
applications, referred to as "clients" in this specification.

The overall intention is to provide a complete set of GL services that fully support the
implementation of accounting clients that need to interoperate with one or more GL
implementations. All user interfaces are the responsibility of the clients; whereas, GL Facility
implementations are responsible for back-end operations. The GL Facility supports various GL
characteristics and operations such as persistence, multi-currency, and other requirements specified
by the Object Management Group's General Ledger Facility Request for Proposal, as recommended
by the OMG Financial Domain Task Force (FDTF), the OMG Accounting Working Group and the
Esprit COMPASS project.

 OMG General Ledger Facility

7

GL Interface Summary

The General Ledger Facility defines interfaces (using OMG/ISO IDL) to support the capabilities as
mentioned previously. The following table gives a high level description of the General Ledger
Facility interfaces. Subsequent sections describe the interfaces in more detail.

Interface Purpose Primary Client(s)
GLProfile Client Session Establishment All GL clients
GLBookKeeping Data entry Data entry clients
GLRetrieval Data extraction Reporting clients
GLAccountLifecycle Account lifecycle management GL administration clients
GLIntegrity Data integrity checks GL administration clients
GLFacilityLifecycle GL lifecycle management GL administration clients

Table 1-1 Synopsis of General Ledger Facility Interfaces

Service Level Interfaces

Accounting Com ponent
<<client>>

GL Profile
<<interface>>

GL Retrieval
<<interface>>

GL Bookkeeping
<<interface>>

GL Integrity
<<interface>>

GL Account Lifecycle
<<interface>>

GL Facility Lifecycle
<<interface>>

Figure 1-1: Illustrates the different service level interfaces that comprise the General Ledger
Facility, as documented in Table 1-1.

Points of Contact

All questions about this submission should be directed to:

Jack Hassall
Stanford Software International Ltd
Address: The Hollygate, Chestergate
Stockport
SK3 0BD
United Kingdom
E-mail: jack_hassall@omg.org
Tel.: +44 161 480 4051
Fax: +44 161 429 0966

 OMG General Ledger Facility

8

Other contacts include:

Roger Barnett
Real Objects Ltd
Address: 118-120 Warwick Street
Leamington Spa
CV32 4QY
United Kingdom
E-mail: roger@realobj.co.uk
Tel.: +44 1926 332116 ex 239
Fax: +44 1926 883370

Arne-Jørgen Berre
SINTEF Telecom and Informatics
Address: Forskningsveien 1
Po Box: 124, Blindern, N-0314
Oslo, Norway
E-mail: arne.j.berre@informatics.sintef.no
Tel.: +47 2206 7452
Fax: +47 2206 7350

Morten Jacobsen
Economica AS
Address: Olaf Helsetsvei 6
Po Box: 70 Bogerud, N-0621
Oslo, Norway
E-mail: morten@economica.com
Tel.: +47 920 97 818
Fax: +47 6258 0197

 OMG General Ledger Facility

9

Section II: Module FdGeneralLedger

The IDL code in this specification follows the established conventions used by many of the
previously adopted OMG IDL specifications. In the following sections, IDL code is set in courier
font. Specification semantics are set in Times New Roman font.

The FdGeneralLedger module defines the interfaces of the GL Facility, as well as the structs, exceptions, and
typedefs used by those interfaces. The interfaces are defined for different types of client applications
and users, so that a client does not have to depend upon interfaces it doesn’t use.

Included OMG/ISO IDL Files

#include <FdCurrency.idl>

The GL Facility uses currency types defined from an external currency specification (See Appendix
A for Service Dependencies).

 Module FdGeneralLedger

module FdGeneralLedger {

The module statement establishes the syntactic scope for the GL Facility definitions. The module
name uses the financial domain naming standard with the “Fd” prefix.

GL Facility Invariants

These are the key assumptions regarding the responsibilities of GL Facility implementations.

• The GL Facility maintains state for each client session. For example, each client session
concerns only one known company and the company's established chart of accounts.

• There is a one-to-one mapping between each company and each chart of accounts in each GL
Facility instance. This "single set of books" constraint is conformant with international
accounting standards. However, a GL Facility is not responsible for enforcing this constraint
in federation with other GL Facility installations.

• Operations performed during each client session are constrained by session-specific GL
policies. See GLFacilityLifecycle for administrative operations.

 OMG General Ledger Facility

10

GL Facility Environment Contract

These are the key assumptions provisioned for the environmental objects containing and managing
the GL Facility.

• The GL Facility assumes that client authentication for the security policy domain has occurred
prior to access to GL interfaces. See Security Service Dependencies, Appendix A.

• The GL Facility assumes that access controls will be applied according to system domain
policies during prior to and during client sessions. For example, the passing of clear-text
parameters in operation invocations will be protected from unauthorised access or disclosure.

• The only interface provided to GL clients prior to GL session establishment is the GLProfile
interface.

• The environment shall not disclose other GL interfaces to GL clients. That is the responsibility
of the GLProfile interface. For example, only the GLProfile interface shall be advertised in the
Trader Service and Name Service. Other GL interfaces are provided by the GLProfile
interface, subsequent to GL client session establishment.

 OMG General Ledger Facility

11

GL Forward Declarations

interface GLProfile; // establish client session
interface GLBookKeeping; // information entry
interface GLRetrieval; // information acquisition
interface GLIntegrity; // information integrity checks
interface GLAccountLifecycle; // GL Account lifecycle management
interface GLFacilityLifecycle; // GL Facility lifecycle management

Forward declarations are included for all of the interfaces defined in the GL Facility.

GL Typedefs

The FdGeneralLedger module defines several types for the accounting information. Among these
are a number of sequence types, which follow the naming convention <T>List where T is the type
of the sequence elements.

GL Basic Types

typedef sequence<boolean> booleanList;
typedef sequence<wstring> wstringList;

Collection types for booleans and wide strings. All the strings used in the module are wstrings.

struct NameValue {
 wstring name;
 wstring value; }; // TBD.
typedef sequence<NameValue> NameValueList;

 Name-value pair and collection of name-value pairs.

typedef FdCurrency::Date Date;
typedef FdCurrency::Money Money;
typedef wstring Currency; // ISO currency mnemonic

Types imported from an external currency specification, module FdCurrency. These types are used
opaquely in this specification.

 OMG General Ledger Facility

12

GL Account Information

enum ChartKind {DEFAULT_NOMINAL, EXISTING_CHART, EMPTY_LEDGER };

Defines the different kinds of Charts of Accounts schemas for the purposes of initialisation. Used
when setting up the chart of accounts for a company’s ledger.

struct AccountInfo {
 wstring acc_ref;
 wstring description; };
typedef sequence<AccountInfo> AccountInfoList;

enum AccountKind { CASH, BANK, CONTROL, REGULAR };

Identifies the pre-defined types of GL accounts. A GL account is a “regular” GL account by
default. The GL maintains additional state values for GL accounts. Cash and Bank accounts are
special designations of GL accounts, that otherwise behave like “regular” GL accounts.

Summary information about GL accounts, with their identifier and descriptive name.

struct Account {
 wstring GLAcc_ref; // GL Account reference
 wstring GLAcc_name; // name
 wstring GLreporting_code; // grouping code
 Currency default_currency;
 Money balance;
 boolean is_control;
 Money mth_bal;
 Money ytd_bal;
 wstring con_acc_kind;
 wstring con_acc_desc;
 wstringList optional_fields; };

The account structure is a description of an account in the General Ledger. The field GLAcc_ref
is a unique reference to the account within the GL Facility. The field GLAcc_name is a
descriptive client specified name. The GLreporting_code is a reporting code that may be used
as a synonym for the account name. A default_currency is specified for each account.. GL accounts
and control accounts are differentiated by the is_control boolean. The fields balance ,
mth_bal (monthly), and ytd_bal (year to date) are state values maintained for GL control
accounts. The fields con_acc_kind and con_acc_desc denote characteristics of control accounts.
The optional_fields contain implementation specific extensions.

typedef sequence<Account> AccountList;

A collection of GL account descriptions.

 OMG General Ledger Facility

13

GL Periods and Transaction Information

enum PeriodKind { NO_DATE, WEEK, MONTH, QUARTER, YEAR }; // TBD.

An accounting period can be undated (NO_DATE), weekly, monthly, quarterly, or yearly.

struct AccountingPeriod { // TBD.
 wstring period_name;
 PeriodKind period_kind;
 Date start_date;
 Date end_date; };

Transactions posted to the GL belong to accounting periods, which can correspond to a date range
or be undated. Undated periods are usually used for special transactions connected to year end
closing procedures. Accounting periods have a client defined period name. Accounting periods also
have a start date and an end date which are an inclusive in the specified period.

struct HistorySpec{
 wstring lower_acc_ref, upper_acc_ref;
 wstring start_period, end_period; // TBD.
 Date start_date, end_date;
 wstring lower_trans_no, upper_trans_no; };
typedef sequence<HistorySpec> HistorySpecList;

Used for retrieving a subset of the transactions in the ledger.

struct ControlAccInfo {
 wstringList control_acc_names;
 wstringList control_acc_ref_nos;
 unsigned short max_bank_accs; // TBD.
 wstringList bank_acc_ref_nos; };
typedef sequence <ControlAccInfo> ControlAccInfoList;

Used for retrieving information about GL control accounts.

struct TransactionInfo { // TBD.
 wstring trans_no;
 wstring trans_kind;
 wstring period_id; // not in appendix b
 Date trans_date; };

Summary information of a Transaction.

typedefsequence <TransactionInfo> TransactionInfoList;

Summary information about a list of GL transactions posted to the GL

 OMG General Ledger Facility

14

struct Entry { // TBD.
 unsigned long trans_no;
 Date entered_date;
 wstring account_no;
 wstringList dimension_accounts;
 Money amount;
 DDecimal quantity;
 wstring description;
 wstring rule_ref;
 wstring invoice_no;
 wstring document_ref;
 wstring user_name;
 ValueList optional_fields;
};

A column entry in the ledger.

typedef sequence<Entry> EntryList;

A list of column entries.

struct Transaction {
 unsigned long trans_no;
 wstring trans_kind;
 wstring period_id;
 Date trans_date;
 wstring document_ref;
 EntryList entries;
 ValueList optional_fields;
};

A row in the ledger, i.e. a balanced transaction. The sum of the entries’ amounts must be 0.

typedef sequence<Transaction> TransactionList

A list of transactions. // TBD.

 OMG General Ledger Facility

15

GL Data Type Argument Exceptions

The type booleanList is used to indicate the position of the error. For example, if the error is in a
struct type, the booleanList indicates the bad struct member, positional order, starting with 0. For
Accounts, Transactions, and Entries, the position is indexed by the GLParameterIds.

 exception BadDate { wstring error;
 Date bad_value; };

 exception BadChartKind { wstring error
 ChartKind bad_value; };

 exception BadSelection { wstring error;
 unsigned long selection_code;
 booleanList bad_members; };

 exception BadTransaction { wstring error;
 wstring trans_no; booleanList bad_fields; };

 exception BadAccountKind {wstring error;
 AccountKind bad_value; };

 exception BadHistorySpec { wstring error;
 booleanList bad_members; };

exception BadPeriod {
 wstring error;
 wstring period_id; }; // TBD.

Other Exceptions

 exception BadName { wstring error, bad_value; };

 exception BadAccountRef { wstring error;
 wstring bad_value; };

GL account reference does not exist, or, when creating a new account, the account reference is
invalid or, there is already a GL account with that reference.

 exception BadTransNo { wstring error;
 wstring bad_value; };

 exception NoChartOfAccounts { wstring error; };

There is no chart of accounts. The NoChartOfAccounts exception is used explicitly on GL
initialisation operations. Other exceptions may be raised if the Chart of Accounts is uninitialized or
otherwise improperly configured.

 OMG General Ledger Facility

16

 exception CannotRemove (wstring error; };

It is not possible to delete or remove this object.

 exception ProfileError { wstring error; }; // TBD.

 exception UnknownCompany(wstring error, bad_value;);

Company name does not match a known chart of accounts. bad_value is the erroneous company
name.

 exception MaxExceeded { wstring error;
 unsigned long max_amount; };

An implementation-specific amount was exceeded.

 exception BadIntegrity { wstring error;
 any bad_value; };

Indicates a failure of a GL integrity check.

 exception BadAccountName { wstring error;
 wstring bad_value; };

Account name is invalid.

 exception BadReportingCode { wstring error;
 wstring bad_value; };

Reporting code is invalid.

 OMG General Ledger Facility

17

Section III: GL Profile Interface

The GLProfile is the initial interface used to establish a client session. A client session must be
established prior to use of the General Ledger Facility. Each client session must use a unique
instance of GLProfile

GLProfile Operation: get_default_company_name

wstring get_default_company_name()
 raises (NoChartOfAccounts);

Description
Each GL Facility can manage the General Ledgers of many different companies (one GL per
company.) One of the companies is designated as the default company; its name can be retrieved
with this operation.

Precondition
none

Input parameters
none

Output parameters
none

Return value
Returns the default company name as a wstring.

Exceptions
NoChartOfAccounts: Raised when there are no ledgers (and hence no default company name)
available.

Postcondition
none

 OMG General Ledger Facility

18

GLProfile Operation: get_GL_company_names

wstringList get_GL_company_names()
 raises (NoChartOfAccounts);

Description
Allows the clients to retrieve the company names of the available ledgers.

Precondition
This operation can be called prior to GL login.

Input Parameters
none

Output Parameters
none

Return Value
Returns wstringList with a sequence of all company names available in the General Ledger
Facility.

Exceptions
NoChartOfAccounts: Raised when there are no ledgers available.

Postcondition
none

 OMG General Ledger Facility

19

GLProfile Operation: get_current_system_date

 Date get_current_system_date();

Description
Allows the clients to retrieve the current date used by the GL Facility

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns a Date object.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

20

GLProfile Operation: general_ledger_open

wstring general_ledger_open (
 in wstring company_name, in Date system_date)
 raises (UnknownCompany, ProfileError, BadDate);

Description
Establishes client session for a General Ledger by company name. system_date is the effective
date of the session. This is so any updates to the General Ledger can appear in the correct period.

Precondition
none

Input Parameters
wstring company_name: The company name of the ledger to select.
Date system_date: The effective system date for this session.

Output Parameters
none

Return Value
Returns a ClientProfile struct with information about the client session..

Exceptions
UnknownCompany: raised if a ledger for the company named company_name is not known to the
General Ledger Facility.

Postcondition
A client session is established against the ledger identified by company_name. If the client is
already logged in, an exception is raised.

 OMG General Ledger Facility

21

GLProfile Operation: book_keeping

GLBookKeeping book_keeping();

Description
This method retrieves a reference to the GLBookKeeping interface for the current company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns a GLBookKeeping for use in the current session. Once the session has ended the returned
GLBookKeeping is no longer a valid object.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
None

 OMG General Ledger Facility

22

GLProfile Operation: retrieval

GLRetrieval retrieval()raises (ProfileError);

Description
This method retrieves a reference to the GLRetrieval interface for the current company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns a GLRetrieval for use in the current session. Once the session has ended the returned
GLRetrieval is no longer a valid object.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
None

 OMG General Ledger Facility

23

GLProfile Operation: integrity

GLIntegrity integrity() raises (ProfileError);

Description
This method retrieves a reference to the GLIntegrity interface for the current company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns a GLIntegrity for use in the current session. Once the session has ended the returned
GLIntegrity is no longer a valid object.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
None

 OMG General Ledger Facility

24

GLProfile Operation: account_lifecycle

GLAccountLifecycle account_lifecycle()raises (ProfileError);

Description
This method retrieves a reference to the GLAccountLifecycle interface for the current company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns a GLAccountLifecycle for use in the current session. Once the session has ended the
returned GLAccountLifecycle is no longer a valid object.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
None

 OMG General Ledger Facility

25

GLProfile Operation: Facility_lifecycle

GLFacilityLifecycle Facility_lifecycle()raises (ProfileError);

Description
This method retrieves a reference to the GLFacilityLifecycle interface for the current company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns a GLFacilityLifecycle for use in the current session. Once the session has ended the
returned GLFacilityLifecycle is no longer a valid object..

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
None

 OMG General Ledger Facility

26

GLProfile Operation: get_client_company_name

wstring get_client_company_name() raises (ProfileError, NoChartOfAccounts);

Description
This method retrieves the name of the currently selected company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns the currently active company name.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call. NoChartOfAccounts is raised when there are no companies in the General Ledger.

Postcondition
None

 OMG General Ledger Facility

27

GLProfile Operation: get_current_period

AccountingPeriod get_current_period() raises (ProfileError);

Description
Each ledger implementation maintains a default period, which is typically the last open period. The
get_current_period() operation retrieves this default period for the current company.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns an AccountingPeriod struct with information about the current period for the current
ledger.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
none

 OMG General Ledger Facility

28

GLProfile Operation: get_GLReport_codes

wstringList get_GLReport_codes()raises (ProfileError);

Description
Each ledger uses a set of reporting codes, which are typically used to group accounts in reports.
This operation retrieves the reporting codes available for the current client.

Precondition
A client session must have been established with general_ledger_open. A set of reporting codes
should exist for the ledger. For implementations which do not supply a default set of reporting
codes, the client can ensure this by calling the GLFacilityLifecycle operation
set_GLReport_codes().

Input Parameters
none

Output Parameters
none

Return Value
Returns a wstringList with a list of report codes valid for the current session.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

 OMG General Ledger Facility

29

GLProfile Operation: get_default_currency

wstring get_default_currency()raises (ProfileError);

Description
Each ledger maintains a default currency, which is used when creating new accounts (see the
createAccount operation in GLAccountLifecycle.)

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns a wstring containing the default currency mnemonic for the current session.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
none

 OMG General Ledger Facility

30

GLProfile Operation: get_known_currencies

wstringList get_known_currencies() raises (ProfileError);

Description
The Money values in financial transactions posted to the GL must have a valid currency mnemonic
and Money attribute. This method allows the client to retrieve all available currencies

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
Returns wstringList with a list of known currency mnemonics valid for the current session.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
none

 OMG General Ledger Facility

31

GLProfile Operation: get_dimension_names

wstringList get_dimension_names() raises (ProfileError);

Description
Dimensions are orthogonal axes in proportion to an account. get_dimension_names finds the names
that match the clients account.

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns wstringList:with the names of the available dimensions.

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
none // TBD.

 OMG General Ledger Facility

32

GLProfile Operation: quit

void quit() raises (ProfileError);

Description
Closes down the current client session.

Precondition
A client session must have been established with general_ledger_open.

Input Parameters
none

Output Parameters
none

Return Value
none

Exceptions
ProfileError: The client has not successfully established a session with general_ledger_open prior
to the call.

Postcondition
Once this method is invoked, all references to other interfaces in the General Ledger immediately
become invalid. This method also invalidates any references to the current GLProfile so that the
resource is properly released. However, compliant implementations need not enforce this.

 OMG General Ledger Facility

33

Section IV: GLBookKeeping Interface

The GLBookkeeping interface is used for entering new transactions in the ledger of the company
selected at login.

GLBookKeeping Operation: post

void post(in Transaction single_transaction)
 raises (BadTransaction);

Description
Posts a single transaction to the ledger.

Precondition
none

Input Parameters
transaction single_transaction: The transaction to post.

Output Parameters
none

Return Value
none

Exceptions
BadTransaction: One of the fields in trans or its entries have an illegal value, or the transaction is
not balanced (the sum of its entries is not 0.)

Postcondition
The transaction is added to the ledger, and the balances of the accounts referenced by the entries are
updated.

 OMG General Ledger Facility

34

GLBookKeeping Operation: post_batch

void post_batch (in TransactionList transactions) raises (BadTransaction);

Description
Posts a list of transactions to the ledger.

Precondition
none

Input Parameters
TransactionList transactions: The list containing the transactions to post.

Output Parameters
none

Return Value
none

Exceptions
BadTransaction: One of the fields in trans or its entries have an illegal value, or the transaction is
not balanced (the sum of its entries is not 0.) The transaction causing the error is identified with the
trans_no variable of the exception.

Postcondition
The ledger contains the transactions in the transactions list. If one of the transactions causes an
exception to be raised, none of the transactions in the list are written to the ledger. The balances of
the accounts referenced by the entries in the transactions are updated.

 OMG General Ledger Facility

35

Section V: GLRetrieval Interface

The GLRetrieval interface supports client reporting functions for the chart of accounts and the
transactions in the ledger for the current company.

Chart of Accounts Information

The following operations provide information about the chart of accounts in the current company’s
ledger.

GLRetrieval Operation: number_of_accounts

unsigned long number_of_accounts();

Description
Retrieves the number of accounts in the ledger for the current company.

Precondition
none

Input Parameters
none

Output Parameters
none

Return value
Returns the number of accounts as an unsigned long.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

36

GLRetrieval Operation: get_account_info

AccountInfoList get_account_info(
 in AccountKind type_of_account)
 raises (BadAccountKind);

Description
Allows the client to retrieve summary information about the accounts of a specific type.

Precondition
none

Input Parameters
AccountKind type_of_account: The account type for which the summary account information are
to be retrieved.

Output Parameters
none

Return Value
Returns an AccountInfoList with summary information for all the accounts of the specified type.

Exceptions
BadAccountKind: The parameter type_of_account is not a valid AccountKind.

Postcondition
none

 OMG General Ledger Facility

37

GLRetrieval Operation: get_all_account_info

AccountInfoList get_all_account_info();

Description
Retrieves summary information for all the accounts in the ledger.

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns an AccountInfoList with summary information for all the accounts in the ledger.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

38

GLRetrieval Operation: get_account

Account get_account(in wstring GLAcc_ref)
 raises (BadAccountRef);

Description
Retrieves a single account from the current ledger.

Precondition
none

Input Parameters
wstring GLAcc_ref: The number of the account to be retrieved.

Output Parameters
none

Return Value
Returns an Account struct with a full description of the account identified by GLAcc_ref.

Exceptions
BadAccountRef: The account reference does not exist in the ledger.

Postcondition
none

 OMG General Ledger Facility

39

GLRetrieval Operation: get_multiple_accounts

AccountList get_multiple_accounts(
 in wstringList GLAcc_refs)
 raises (BadAccountRef);

Description
Retrieves a set of accounts from the ledger.

Precondition
none

Input Parameters
wstringList GLAcc_refs: List containing the numbers of the accounts to be retrieved.

Output Parameters
none

Return Value
Returns an AccountList containing full descriptions for the accounts identified by the account
references in GLAcc_refs

Exceptions
BadAccountRef: An account reference in the GLAcc_refs list parameter does not exist in the
ledger.

Postcondition
none

 OMG General Ledger Facility

40

GLRetrieval Operation: get_accounts_from_GLreporting_code

AccountList get_accounts_from_GLreporting_code(
 in wstring GLreporting_code)
 raises (BadReportingCode);

Description
Allows the client to retrieve accounts for a certain reporting code.

Precondition
none

Input Parameters
wstring GLreporting_code: The reporting code for which accounts are to be retrieved.

Output Parameters
none

Return Value
Returns an AccountList with the accounts having the given reporting code.

Exceptions
BadReportingCode: The reporting code is not valid.

Postcondition
none // TBD.

 OMG General Ledger Facility

41

GLRetrieval Operation: get_control_acc_info

AccountInfoList get_control_acc_info();

Description
Allows the client to retrieve the control accounts in the ledger.

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns an AccountInfoList containing summary information for all the control accounts in the
ledger.

Exceptions
none

Postcondition
none // TBD.

 OMG General Ledger Facility

42

General Ledger Transactions Retrieval

These operations provide information about transactions which have been entered in the current
company’s ledger.

GLRetrieval Operation: number_of_current_transactions

unsigned long number_of_current_transactions();

Description
Retrieves the total number of financial transactions posted to the current company’s General
Ledger.

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns the number of transactions as an unsigned long.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

43

GLRetrieval Operation: get_transaction_info

TransactionInfoList get_transaction_info(in trans_no) raises (BadTransNo);

Description
Retrieves summary information for all specified financial transactions posted to General Ledger for
a given GL account reference.

Precondition
none

Input Parameters
trans_no // TBD.

Output Parameters
none

Return Value
Returns a TransactionInfoList containing summary information for all transactions related to the
specified GL account reference.

Exceptions
BadTransNo is raised if the specified GL transaction reference is invalid.

Postcondition
none

 OMG General Ledger Facility

44

GLRetrieval Operation: get_multiple_transaction_info

TransactionInfoList get_multiple_transaction_info (in HistorySpec
history_range)raises (BadHistorySpec, MaxExceeded);

Description
Retrieves summary information for all the transaction in the current company’s ledger as specified
by the HistorySpec.

Precondition
none

Input Parameters
HistorySpec

Output Parameters
none

Return Value
Returns a TransactionInfoList containing summary information for all the ledger transactions.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

45

GLRetrieval Operation: get_current_history_range

HistorySpec get_current_history_range(out unsigned long
number_of_transactions);

Description
Subsets of the transactions in the ledger are specified with the HistorySpec struct. This operation
retrieves the largest range of filter values for the transactions in the current company’s ledger, such
as the first and last accounting period and the range of transaction numbers.

Precondition
none

Input Parameters
none

Output Parameters
unsigned long number_of_transactions: The number of transactions that will fit the returned history
spec, i.e. the total number of transactions in the ledger.

Return Value
Returns a HistorySpec with the maximum range for all the history dimensions of the transactions in
the ledger.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

46

GLRetrieval Operation: number_of_history_transactions

unsigned long number_of_history_transactions(
 in HistorySpec history_range)
 raises (BadHistorySpec);

Description
For a given account history specification range, this operation returns the number of transactions in
the chart of accounts that match the history specification.

Precondition
none

Input Parameters
HistorySpec history_range: The transaction filter for which the transaction count is desired.

Output Parameters
none

Return Value
Returns the number of transactions which fall within the range specified by history_range as an
unsigned long.

Exceptions
BadHistorySpec: One or more fields of the history_range parameter contains illegal values.

Postcondition
none

 OMG General Ledger Facility

47

GLRetrieval Operation: get_multiple_transactions

TransactionList get_multiple_transactions(
 in HistorySpec history_range)
 raises (BadHistorySpec, MaxExceeded);

Description
Retrieves a subset of the transactions in the current company’s ledger.

Precondition
none

Input Parameters
HistorySpec history_range: The filter to use for selecting transactions from the ledger.

Output Parameters
none

Return Value
Returns a TransactionList containing the transactions in the ledger, which fall into the range
history_range.

Exceptions
BadHistorySpec: one or more fields of the history_range parameter contains illegal values
MaxExceeded: an implementation specific maximum value has been exceeded.

Postcondition
none

 OMG General Ledger Facility

48

GLRetrieval Operation: get_current_transactions

TransactionList get_current_transactions();

Description
Retrieves all the transactions in the ledger. This may return a very large number of transactions.
Most client applications will use the get_multiple_transactions operations to retrieve a subset of the
transactions at a time.

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns a TransactionList containing all the transactions in the ledger.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

49

Section VI: GLAccountLifecycle Interface

The GLAccountLifecycle service manages the lifecycle of the accounts in the ledger, facilitating
the customisation of the chart of account selected when the ledger was created. Only client sessions
with GL Manager privileges can use the operations in the interface.

GLAccountLifecycle Operation: createAccount

void createAccount(in wstring GLAcc_ref,
 in wstring GLAcc_name,
 in boolean is_nominal_account,
 in boolean is_control_account, // TBD.
 in wstring reporting_code)
 raises (BadAccountRef, BadAccountName,
 BadReportingCode);

Description
Creates a new account, identified by GLAcc_ref.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstring GLAcc_ref: unique identifier for accounts. wstring GLAcc_name: descriptive name for the
account. Whether an account name has to be unique or not is implementation-defined. Boolean
is_nominal_account: true if the account is nominal (its balance is reset at the end of the accounting
year.) Boolean is_control_account: true if the account is a control account. wstring reporting_code:
the reporting code, which must be one of the codes passed to the GLFacilityLifecycle operation
set_GLReport_codes().

Output Parameters
none

Return Value
none

Exceptions
BadAccountRef: raised if GLAcc_ref is not unique, empty, or otherwise unacceptable to the
underlying implementation. BadAccountName: raised if GLAcc_name is empty, or otherwise
unacceptable to the underlying implementation. BadReportingCode: raised if reporting_code is not
one of the allowed values..

Postcondition
The new account is added to the ledger. The default currency of the new account is set to the
default currency of the ledger.

 OMG General Ledger Facility

50

GLAccountLifecycle Operation: removeAccount

void removeAccount(in wstring GLAcc_ref)
 raises (BadAccountRef,
 CannotRemove);

Description
Removes the account identified by GLAcc_ref from the chart of accounts.

Precondition
The client session must have been established with Manager privileges. The account cannot be in
use; accounts which are in use cannot be deleted. An account is in use when there are associated
financial transactions in the ledger, or it is a control account referring to a non-empty set of other
accounts, or the balance of the account is non-zero.

Input Parameters
wstring GLAcc_ref: unique identifier for the account.

Output Parameters
none

Return Value
none

Exceptions
BadAccountRef: raised if the account reference GLAcc_ref is not present in the ledger.
CannotRemove: raised if the account is in use.

Postcondition
none

 OMG General Ledger Facility

51

GLAccountLifecycle Operation: modify_account

void modify_account(in wstring GLAcc_ref,
 in wstring new_GLAcc_name,
 in wstring new_reporting_code)
 raises (BadAccountRef,
 BadAccountName,
 BadReportingCode);

Description
Modifies the descriptive name and/or the reporting code associated with the account identified by
GLAcc_ref.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstring GLAcc_ref: identifies the account to be modified.
wstring new_GLAcc_name: new descriptive name for the account.
wstring new_reporting_code: new reporting code for the account.

Output Parameters
none

Return Value
none

Exceptions
BadAccountRef: raised if the GLAcc_ref not is identified or another account has the same id.
BadAccountName: raised if the GLAcc_name is empty or otherwise unacceptable to the underlying
implementation. BadReportingCode: The reporting code is invalid.

Postcondition
none

 OMG General Ledger Facility

52

GLAccountLifecycle Operation: close_accounting_period

void close_accounting_period(
 in wstring period_id)
 raises (BadPeriod);

Description
Closes the accounting period identified by period_id. No more transactions can be posted to the
ledger for a closed period.

Precondition
The client session must have been established with Manager privileges.
The period must be open. A period in an accounting year cannot be closed if the previous
accounting year has not been closed with close_accounting_year. All preceding accounting periods
must be closed.

Input Parameters
wstring period_id: indicate the account period to be closed.

Output Parameters
none

Return Value
none.

Exceptions
BadPeriod: raised if period_id does not exist or the period is already closed.

Postcondition
none // TBD.

 OMG General Ledger Facility

53

GLAccountLifecycle Operation: close_accounting_year

void close_accounting_year(
 in wstring last_period_in_year)
 raises(BadPeriod);

Description
Marks the accounting year whose last period is last_period_in_year as closed. Note that year-end
closing can be a complex process, and it varies greatly between different implementations and even
users. Therefore, this operation does not perform any specific year-end processing, such as
transferring the balances of nominal (e.g. profit and loss) accounts to the appropriate balance sheet
accounts. Such operations are intended to be performed by components or applications using any
necessary GL interfaces for the purpose.

Precondition
The client session must have been established with Manager privileges.
The period last_period_in_year must be closed.

Input Parameters
wstring last_period_in_year: Identifies the last period in the year to be closed.

Output Parameters
none

Return Value
none

Exceptions
BadPeriod: The period does not exist, is not closed, or is not the last period in an accounting year.

Postcondition
none // TBD.

 OMG General Ledger Facility

54

Section VII: GLIntegrity Interface

The GLIntegrity interface provides integrity checks of the chart of accounts and transactions in the
ledger of the current company.

GLIntegrity Operation: get_dynamic_selection

wstringList get_dynamic_selection();

Description
Returns a list of available integrity tests. Each integrity test is identified by a name.

Precondition
none

Input Parameters
none

Output Parameters
none

Return Value
Returns a wstringList containing the implementation-defined list of integrity checks.

Exceptions
none

Postcondition
none

 OMG General Ledger Facility

55

GLIntegrity Operation: check_integrity

boolean check_integrity(
 in wstring integrity_check_selection)
 raises (BadSelection, BadIntegrity);

Description
Performs the indicated integrity check.

Precondition
The integrity check must be one of those returned by get_dynamic_selection, which therefore has
to be called first.

Input Parameters
wstring integrity_check_selection: Identifies the integrity check to perform.

Output Parameters
none

Return Value
Returns true if the integrity test passes, false if there are warnings.

Exceptions
BadSelection: The selected test is not one of the available integrity tests. BadIntegrity: The
integrity test failed.

Postcondition
Implementation-defined.

 OMG General Ledger Facility

56

Section VIII: GLFacilityLifecycle Interface

The GLFacilityLifecycle operations are used to manipulate the information in the Facility which is
independent of the individual ledgers. This information include users and their access rights,
companies and their chart of accounts, and other information which define the allowed values for
some of the fields of the Account and Transaction structs.

GLFacilityLifecycle Operation: get_company_attributes

NameValueList get_company_attributes(
 in wstring company_name)
 raises (UnknownCompany);

Description
Returns a list with company attributes associated to the a company name.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstring company_name: the name or ID of the company

Output Parameters
none

Return Value
Returns NameValueList: information about a company as a list of name-value pair.

Exceptions
UnknownCompany: raised if trying to get attributes to a non existing company.

Postcondition
none

 OMG General Ledger Facility

57

GLFacilityLifecycle Operation: create_company_chart_of_accounts

void create_company_chart_of_accounts(
 in wstring new_company_name,
 in ChartKind chart_of_account_schema,
 in wstring copied_company_name_for_schema)
 raises (UnknownCompany,
 BadChartKind);

Description
Creates a new company, and sets up an initial chart of account based on the schema indicated by
chart_of_account_schema, or, if copied_company_name_for_schema is non-empty, copies the
chart of accounts from that company.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstring new_company_name:
ChartKind chart_of_account_schema:
wstring copied_company_name_for_schema:

Output Parameters
none

Return Value
none

Exceptions
UnknownCompany: The company copied_company_name_for_schema does not exist.
BadChartKind: chart_of_account_schema is not a valid ChartKind value.

Postcondition
A ledger for the new company is created and made available to new client sessions.

 OMG General Ledger Facility

58

GLFacilityLifecycle Operation: expunge_company

void expunge_company(in wstring company_name)
 raises (UnknownCompany,
 CannotRemove);

Description
Deletes the company and its ledger from the Facility.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstring company_name: the name of the company

Output Parameters
none

Return Value
none

Exceptions
UnknownCompany: raised if trying to delete a none existing company
CannotRemove: unable to delete the chart of accounts.

Postcondition
none

 OMG General Ledger Facility

59

Other Facility and Company Information

GLFacilityLifecycle Operation: set_GLReport_codes

void set_GLReport_codes(in wstringList GLReport_codes)
 raises (BadName, MaxExceeded);

Description
Defines the set of reporting codes for accounts in the current ledger.

Precondition
The client session must have been established.

Input Parameters
wstringList GLReport_codes: The valid reporting codes for the ledger.

Output Parameters
none

Return Value
none

Exceptions
BadName: Invalid name. MaxExceeded: Too many reporting codes.

Postcondition
none

 OMG General Ledger Facility

60

GLFacilityLifecycle Operation: set_default_currencies

void set_default_currency (
 in wstring currency_mnemonic)
 raises (BadName);

Description
Defines the default currency assigned to new accounts in the current ledger.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstring currency_mnemonic: The default currency for new accounts in the ledger.

Output Parameters
none

Return Value
none

Exceptions
BadName: Invalid name.

Postcondition
none

 OMG General Ledger Facility

61

GLFacilityLifecycle Operation: set_known_currencies

void set_known_currencies (
 in wstringList currency_mnemonics)
 raises (BadName, MaxExceeded);

Description
Defines the set of valid currencies for transactions posted to the current ledger.

Precondition
The client session must have been established with Manager privileges.

Input Parameters
wstringList currency_mnemonics: The valid currencies for the ledger.

Output Parameters
none

Return Value
none

Exceptions
BadName: Invalid currency name. MaxExceeded: Too many currencies.

Postcondition
none

 OMG General Ledger Facility

62

Appendix A - Requirements Compliance

The scope of the proposed solutions to the RFP is defined by that document in the following
statements:

• this RFP seeks responses that identify the external interfaces, relationships and semantics, that
are required for accounting application interoperability with General Ledger (GL) systems.

• this RFP does not seek proposals for the internal interfaces of a General Ledger system or
other functions that are not required for general interoperability with accounting applications.

• this RFP does not seek proposals for other financial and accounting applications, but proposals
must define how such other applications could interface and inter-operate with the GL Facility
using OMG IDL interfaces.

• this RFP is limited exclusively to the General Ledger component of the Common Accounting
Facility as found in the OMG Common Facilities Architecture.

RFP Requirements for the General Ledger Facility

The technical requirements for the General Ledger Facility are specified in the Financial Domain
Task Force RFP, document finance/97-11-05, Section 6.0. The following sub-sections follow the
outline of that section.

Specific Mandatory Requirements

Requirement
All interfaces of the General Ledger Facility shall be described in OMG IDL and include
specification of exception conditions on operations. Proposals shall define the General Ledger
Facility in a manner that supports programming language independence and exclude dependence
upon specifications that do not provide for implementation independence.

Response
Met in full.
Previous sections of this submission have specified each of the interfaces comprising the proposed
General Ledger Facility, including additional exception conditions, using the standard OMG IDL as
defined in the CORBA 2.1 specification. Appendix B contains the consolidated IDL specification
for the complete set of interfaces. This IDL has been written following the OMG style guidelines
and its syntax has been validated using a CORBA 2.1 compliant IDL compiler.

 OMG General Ledger Facility

63

Requirement
Proposals shall provide sufficient level of description to allow for independently developed
accounting applications (including legacy) to inter-operate using submitted GL interfaces.

Response
Met in full.
The content of this submission is being used in an on-going European project as the basis for the
design of two separate prototype GL implementations, one of which is based on an existing (i.e.
legacy) accounting product, which are required to inter-operate at the application level - i.e.
semantically.

Requirement
Proposals shall provide GL support for multiple domestic currencies. For example, this
requirement derives from the phased transition in the European Union from single indigenous
National currencies, to the Euro. For a protracted period, both currencies will be used
simultaneously as domestic currencies. The combination of US Dollars and UK Sterling is an
example of mixed currency support that is not necessarily domestic. General support for multiple
international currencies is not mandatory because the vast majority of accounting applications
neither require nor implement this capability.

Response
Multiple domestic currencies are handled by the use of multiple sets of Chart of Accounts and
multiple sets of transactions. Multiple international currencies are not manipulated by the GL, other
than by using the operations inherited from a Currency Facility for Money objects. Any additional
handling of such currencies is regarded as the responsibility of the journal application. See
Currency Facility dependency below.

Requirement
Proposals shall support GL persistence in a manner that is transparent to accounting applications.

Response
By using the OMG Persistent Object Service (Common Object Services Specification, July 1997)
persistence becomes a server-side issue, insulating the client application from these issues.

Requirement
Proposals shall include examples of the behaviour of General Ledger interfaces for clarification.

Response
These are included with the ODP based Enterprise and Information viewpoint documents submitted
to OMG along with this submission.

 OMG General Ledger Facility

64

Requirement
Proposals shall provide for several viewpoints of the General Ledger with respect to specific points
in time.

Response
The concept of an accounting period is included in this submission and can be used to partitions
sets of transactions and/or extracts from the account history. The GLRetrieval interface also
supports the ability to extract sets of transaction data from the General Ledger selected by an
inclusive date range.

Requirement
Submissions shall support interfaces that enable value added roll-up capabilities, although a full
specification of roll-up capabilities is not mandatory and is beyond the scope of the mandatory
requirements of this RFP.

Response
The submission allows full retrieval of all transaction data from the General Ledger, which forms
the most general solution to supporting an unspecified roll-up capability.

Specific Optional Requirements

Requirement
Proposals may provide for consolidated reporting from multiple General Ledgers. This accounting
procedure is often called “roll-up”. Even though roll-up is not required by the majority of
accounting users, roll-up is regularly performed in multi-company enterprises (often by manual
procedures due to lack of systems integration). If a roll-up capability is submitted, proposals shall
address the related systems integration issues.

Response
This submission does not make any specific proposal with regard to roll-up. As previously stated,
the submission does provide a very general retrieval capability which could be used by a particular
implementation as the basis for adding roll-up functionality.

Requirement
Proposals may provide for localisation of the General Ledger with respect to statutory
requirements, natural languages, and local accounting practices.

Response
This submission uses the Money and Date objects from the Currency specification in order to
support the use of multiple currencies and date formats. It also requires the use of the IDL wstring
type for all textual parameters, enabling the use of any supported character set for human-readable
data, and avoids specifying any fixed textual data for items such as error or informational
messages. The submission is based solely on the accounting principles laid down by the
International Accounting Standards Committee, which are accepted and legally required/enforced
by over 100 countries world-wide, and does not assume any other accounting practices. This
approach minimises restrictions on the ability of specific implementations to support specific
accounting regulations and/or practices.

 OMG General Ledger Facility

65

Requirement
Proposals may provide support for multiple textual descriptions of General Ledger entities (such as
account names). For example, this capability is desirable in multi-lingual enterprises to support
user-selected language preferences. Note that multiple textual descriptions can be manually
entered, automated translation is neither necessary nor recommended to support this requirement.

Response
Other than using the wstring type for textual items this submission makes no specific provision for
multi-lingual support.

Requirement
Proposals may provide support for GL accounts and/or transactions within a single GL
implementation to be distributed across multiple servers.

Response
As is normal for any OMG specification, this submission makes no assumptions about the actual
GL implementation and places no restrictions on how it may or may not be actually distributed.

Requirement
Proposals may enumerate departments, projects, or other business categories.

Response
In order to maximise its applicability this submission seeks to minimise the number of fixed
enumerated categories, preferring to use unbounded lists instead.

Requirement
Proposals may support budgets and budget comparisons.

Response
This submission makes no specific provision for handling budgets as distinct items.

Requirement
Proposals may allow for multiple accounting periods that are "open" simultaneously. For example,
a transaction to an accounting period can be made subsequent to the closing date of the accounting
period.

Response
This submission makes no prescriptive statements about the rules that may be applied when using
accounting periods.

 OMG General Ledger Facility

66

Common Mandatory Requirements

Every RFP issued by the OMG includes a common set of requirements which must be met by every
submission (many of these are simply «good practice»).

Requirement
Proposals shall express interfaces in OMG IDL. Proposals should follow accepted OMG IDL and
CORBA programming style. The correctness of the IDL shall be verified using at least one IDL
compiler (and preferably more then one). In addition to IDL quoted in the text of the submission,
all the IDL associated with the proposal shall be supplied to OMG in compiler-readable form.

Response
Met in full.

Requirement
Proposals shall specify operation behaviour, sequencing, and side-effects (if any).

Response
Met in full.

Requirement
Proposals shall be precise and functionally complete. There should be no implied or hidden
interfaces, operations, or functions required to enable an implementation of the proposed
specification.

Response
Met in full.

Requirement
Proposals shall clearly distinguish mandatory interfaces and other specification elements that all
implementations must support from those that may be optionally supported.

Response
Met in full.

Requirement
Proposals shall reuse existing OMG specifications including CORBA, CORBAservices, and
CORBAfacilities in preference to defining new interfaces to perform similar functions.

Response
Met in full.

 OMG General Ledger Facility

67

Requirement
Proposals shall justify and fully specify any changes or extensions required to existing OMG
specifications. This includes changes and extensions to CORBA inter-ORB protocols necessary to
support interoperability. In general, OMG favours upwards compatible proposals that minimise
changes and extensions to existing OMG specifications.

Response
This submission contains no such changes or extensions.

Requirement
Proposals shall factor out functions that could be used in different contexts and specify their
interfaces separately. Such minimality fosters re-use and avoids functional duplication.

Response
Met in full.

Requirement
Proposals shall use or depend on other interface specifications only where it is actually necessary.
While re-use of existing interfaces to avoid duplication will be encouraged, proposals should avoid
gratuitous use.

Response
Met in full.

Requirement
Proposals shall specify interfaces that are compatible and can be used with existing OMG
specifications. Separate functions doing separate jobs should be capable of being used together
where it makes sense for them to do so.

Response
Met in full.

Requirement
Proposals shall preserve maximum implementation flexibility. Implementation descriptions should
not be included, however proposals may specify constraints on object behaviour that
implementations need to take into account over and above those defined by the interface semantics.

Response
Met in full.

Requirement
Proposals shall allow independent implementations that are substitutable and interoperable. An
implementation should be replaceable by an alternative implementation without requiring changes
to any client.

Response
Met in full.

 OMG General Ledger Facility

68

Requirement
Proposals shall be compatible with the architecture for system distribution defined in ISO/IEC
10746, Reference Model of Open Distributed Processing (ODP). Where such compatibility is not
achieved, the response to the RFP must include reasons why compatibility is not appropriate and an
outline of any plans to achieve such compatibility in the future.

Response
Met in full - the RM-ODP has been used extensively during the development of this submission.

Requirement
Proposals shall address relationships to the OMG Security and Transaction Services, whether or not
these technologies are utilised

Response
Met in full.

Proof of Concept Statement

The principal contributors to this submission are involved with the EC-funded COMPASS project,
as part of which they have developed two alternative prototype commercial implementations of
General Ledger software guided by extensive consultation with end users and accounting software
vendors, and utilising existing OMG-compliant technology.

The two implementations are based on existing accounting products and demonstrate the
applicability of this submission to both legacy and component-based software; they will be
available for display at the OMG Technical Meetings following the final submission.

Service Dependencies and Relationships

Security Service
This aspect is currently “work in progress” by the CORBA Security SIG and the FDTF. Security is
of paramount importance when dealing with highly sensitive financial information. One approach
may be to specify some application-level security capabilities, dealing with authorisation and
access control, which could be implemented either by using the existing Security Service (at level
one or above) or by the application itself if no Security Service implementation is available.

Object Transaction Service (OTS)
While this submission makes no explicit use of the Transaction Service, it is likely that
implementations targeted at large enterprises will take advantage of the facilities of this Service for
scalability.

Unified Modelling Language (UML)
The underlying models derived by the COMPASS partners as part of their work on the design of
the interface structure are based on the RM-ODP approach and documented using UML. See
Volume II of this submission.

 OMG General Ledger Facility

69

Calendar Facility
This submission makes no explicit use of this Facility.

Currency Facility
This submission uses a FdCurrency Facility which provides several opaque types to this
specification. As some specifications and features are not yet finalised by OMG nor available in
actual implementations, the submitters have compiled the GL IDL by:

• changing value types to interface types
• use placeholder versions of any non-available service types in the appropriate included IDL file

Workflow Facility
This submission makes no explicit use of the Workflow Facility.

Time and Internationalisation Facility
This submission makes no explicit use of this Facility.

Event Service
This submission makes no explicit use of the Event Service.

Pass-by-Value
Although this submission does not explicitly require support for Pass-by-Value, it is used by the
Currency Facility.

Notification
This submission makes no explicit use of the Notification Service.

Party Management Facility
This submission makes no explicit use of this Facility.

Relationship Service
Although this submission does not use this service itself, it is used in the Currency Facility (see
above).

Query Service
Although this submission does not use this service itself, it is used in the Currency Facility (see
above).

Persistence Service
Although this submission makes no explicit use of this service, its use is assumed in order to
provide server-side persistence.

Messaging Service
This submission may be updated to take advantage of the improved semantics provided by this
service for one-way operations; the optional routing part of this service will not be included.

 OMG General Ledger Facility

70

For convenience, the status of the above, and other relevant technologies, within the OMG process
is shown below. Note: last checked against OMG web site on 29th March 1998.

Current stage in the OMG process Technology
Formally approved Unified Modelling Language (UML)

Event Service
Time and Internationalisation

Formal adoption vote completed COM/CORBA Part B
Object Pass-by-Value
CORBA Core RTF
ORB Interoperability RTF
C++ Mapping RTF
Security 1.2 RTF

Adoption vote in progress Currency Facility
Revised submission(s) received Notification

Workflow Facility
Business Objects

Initial submission(s) received CORBA Component Model
Party Management Facility

Awaiting initial submission(s) Calendar Facility
Awaiting RFI responses Common Business Objects

Relationship to CORBA

The General Ledger Facility assumes the use of a CORBA-compliant ORB.

Relationship to the OMG Object Model

The General Ledger Facility conforms to the OMG Object Model.

 OMG General Ledger Facility

71

Appendix B - General Ledger Facility IDL

#include <FdCurrency.idl>

module FdGeneralLedger {

 // FORWARD DECLARATIONS

 interface GLProfile; // establish client session
 interface GLBookKeeping; // data entry
 interface GLRetrieval; // data acquisition
 interface GLIntegrity; // data integrity checks
 interface GLAccountLifecycle; // GL Account lifecycle management
 interface GLFacilityLifecycle; // GL Facility lifecycle management

 // DATA TYPE DECLARATIONS

 typedef sequence<boolean> booleanList;
 typedef sequence<wstring> wstringList;

 struct NameValue {
 wstring name;
 wstring value; }; // TBD
 typedef sequence<NameValue> NameValueList;

 typedef FdCurrency::Date Date;
 typedef FdCurrency::Money Money;
 typedef wstring Currency; // ISO CURRENCY MNEMONIC

 enum ChartKind {DEFAULT_NOMINAL, EXISTING_CHART, EMPTY_LEDGER };

 struct AccountInfo {
 wstring acc_ref;
 wstring description; };
 typedef sequence<AccountInfo> AccountInfoList;

 enum AccountKind { CASH, BANK, CONTROL, REGULAR };

 struct Account {
 wstring GLAcc_ref; // GL Account reference
 wstring GLAcc_name; // name
 wstring GLreporting_code;
 Currency default_currency;
 boolean is_control;
 Money tp_bal;
 Money ytd_bal;
 wstring con_acc_kind;
 wstring con_acc_desc;
 wstringList optional_fields; };
 typedef sequence<Account> AccountList;

 enum PeriodKind { NO_DATE, WEEK, MONTH, QUARTER, YEAR };

 struct AccountingPeriod {
 wstring period_name;
 PeriodKind period_kind;
 Date start_date;
 Date end_date; };

 OMG General Ledger Facility

72

 struct HistorySpec{
 wstring lower_acc_ref, upper_acc_ref;
 wstring start_period, end_period;
 Date start_date, end_date;
 wstring lower_trans_no, upper_trans_no; };
 typedef sequence<HistorySpec> HistorySpecList;

 struct TransactionInfo {
 wstring trans_no;
 wstring trans_kind;
 wstring period_id; // TBD
 Date trans_date; };
 typedef sequence <TransactionInfo> TransactionInfoList;

 struct Entry {
 unsigned long trans_no;
 Date entered_date;
 wstring account_no;
 wstringList dimension_accounts;
 Money amount;
 double quantity;
 wstring description;
 wstring rule_ref;
 wstring invoice_no;
 wstring document_ref;
 wstring user_name;
 NameValueList optional_fields; };
 typedef sequence<Entry> EntryList;

 struct Transaction {
 unsigned long trans_no;
 wstring trans_kind;
 wstring period_id;
 Date trans_date;
 wstring document_ref;
 EntryList entries;
 NameValueList optional_fields; };
 typedef sequence<Transaction> TransactionList;

 // EXCEPTION DECLARATIONS

 exception BadDate { wstring error;
 Date bad_value; };
 exception BadChartKind { wstring error;
 ChartKind bad_value; };
 exception BadSelection { wstring error;
 unsigned long selection_code;
 booleanList bad_members; };
 exception BadTransaction { wstring error;
 wstring trans_no; booleanList bad_fields; };
 exception BadAccountKind {wstring error;
 AccountKind bad_value; };
 exception BadHistorySpec { wstring error;
 booleanList bad_members; };
 exception BadPeriod {
 wstring error;
 wstring period_id; }; // TBD.
 exception BadName { wstring error, bad_value; };
 exception BadAccountRef { wstring error;
 wstring bad_value; };
 exception BadTransNo { wstring error;

 OMG General Ledger Facility

73

 wstring bad_value; };
 exception NoChartOfAccounts { wstring error; };
 exception CannotRemove { wstring error; };
 exception ProfileError { wstring error; }; // TBD.
 exception UnknownCompany { wstring error, bad_value; };
 exception MaxExceeded { wstring error;
 unsigned long max_amount; };
 exception BadIntegrity { wstring error;
 any bad_value; };
 exception BadAccountName { wstring error;
 wstring bad_value; };
 exception BadReportingCode { wstring error;
 wstring bad_value; };

 // INTERFACE DECLARATIONS

 interface GLProfile {

 // PROFILE OPERATIONS
 wstring get_default_company_name() raises (NoChartOfAccounts);
 wstringList get_GL_company_names() raises (NoChartOfAccounts);
 Date get_current_system_date();
 wstring general_ledger_open (
 in wstring company_name, in Date system_date)
 raises (UnknownCompany, ProfileError, BadDate);
 void quit() raises (ProfileError);

 // FRAMEWORK OPERATIONS
 GLBookKeeping book_keeping() raises (ProfileError);
 GLRetrieval retrieval() raises (ProfileError);
 GLIntegrity integrity() raises (ProfileError);
 GLAccountLifecycle account_lifecycle() raises (ProfileError);
 GLFacilityLifecycle facility_lifecycle() raises (ProfileError);

 // PROFILE INFORMATION
 wstring get_client_company_name() raises (ProfileError,
NoChartOfAccounts);
 AccountingPeriod get_current_period() raises (ProfileError);
 wstringList get_tax_codes() raises (ProfileError); //TBD.
 wstringList get_GLReport_codes() raises (ProfileError);
 wstring get_default_currency() raises (ProfileError);
 wstringList get_known_currencies() raises (ProfileError);
 wstringList get_dimension_names() raises (ProfileError);
 };

 interface GLRetrieval {

 // ACCOUNT RETRIEVAL
 unsigned long number_of_accounts();
 AccountInfoList get_account_info (in AccountKind type_of_account)
 raises (BadAccountKind);
 AccountInfoList get_all_account_info();
 Account get_account (in wstring GLAcc_ref)
 raises (BadAccountRef);
 AccountList get_multiple_accounts (in wstringList account_refs)
 raises (BadAccountRef);
 AccountList get_accounts_from_GLreporting_code(
 in wstring GLreporting_code)
 raises (BadReportingCode);
 AccountInfoList get_control_acc_info();

 OMG General Ledger Facility

74

 // TRANSACTION RETRIEVAL
 unsigned long number_of_current_transactions();
 TransactionInfo get_transaction_info(in wstring trans_no) raises
(BadTransNo);
 TransactionInfoList get_multiple_transaction_info (
 in HistorySpec history_range)
 raises (BadHistorySpec, MaxExceeded);
 HistorySpec get_current_history_range (
 out unsigned long number_of_transactions);
 unsigned long number_of_history_transactions (
 in HistorySpec history_range)
 raises (BadHistorySpec);
 Transaction get_transaction(in wstring trans_no)
 raises (BadTransNo);
 TransactionList get_multiple_transactions (in HistorySpec history_range
)
 raises (BadHistorySpec, MaxExceeded);
 };

 interface GLBookKeeping {

 void post (in Transaction single_transaction) raises (BadTransaction
);
 void post_batch (in TransactionList transactions) raises (
BadTransaction);

 };

 interface GLAccountLifecycle {

 // ACCOUNT LIFECYCLE
 void createAccount(in wstring GLAcc_ref,
 in wstring GLAcc_name,
 in boolean is_nominal_account,
 in boolean is_control_account, // TBD.
 in wstring reporting_code)
 raises (BadAccountRef, BadAccountName, BadReportingCode);
 void removeAccount(in wstring GLAcc_ref)
 raises (BadAccountRef, CannotRemove);
 void modify_account(in wstring GLAcc_ref,
 in wstring new_GLAcc_name,
 in wstring new_reporting_code)
 raises (BadAccountRef, BadAccountName, BadReportingCode);

 // PERIOD/YEAR CLOSING
 void close_accounting_period(
 in wstring period_id)
 raises (BadPeriod);
 void close_accounting_year(
 in wstring last_period_in_year)
 raises(BadPeriod);

 };

 interface GLIntegrity {

 wstringList get_dynamic_selection();
 boolean check_integrity (in wstring integrity_check_selection)
 raises (BadSelection, BadIntegrity);

 };

 OMG General Ledger Facility

75

 interface GLFacilityLifecycle {

 // COMPANY/CHART OF ACCOUNTS LIFECYCLE
 NameValueList get_company_attributes (in wstring company_name)
 raises (UnknownCompany);
 void create_company_chart_of_accounts (in wstring new_company_name,
 in ChartKind chart_of_account_schema,
 in wstring copied_company_name_for_schema)
 raises (UnknownCompany, BadChartKind);
 void expunge_company (in wstring company_name)
 raises (UnknownCompany, CannotRemove);
 void set_GLReport_codes (in wstringList GLReport_codes)
 raises (BadName, MaxExceeded);
 void set_default_currency (in wstring currency_mnemonic)
 raises (BadName);
 void set_known_currencies (in wstringList currency_mnemonics)
 raises (BadName, MaxExceeded);

 };

}; // end of FdGeneralLedger

 OMG General Ledger Facility

76

Appendix C - References

[1] Executive Encyclopaedia: Fortune, 1987.
[2] P. Allen and S. Frost, Component-Based Development for Enterprise Systems, Applying

The SELECTIVE Perspective: Cambridge, 1998.
[3] G. Booch, I. Jacobson, and J. Rumbaugh, “UML Semantics,” Rational Software

Corporation Version 1.0, January 13 1997.
[4] W. J. Brown, R. C. Malveau, H. W. M. III, and T. J. Mowbray, Anti Patterns, Refactoring

Software, Architectures, and Projects in Crisis: John Wiley & Sons, Inc., 1998.
[5] C. F. Cargill, Information Technology Standardisation: Theory, Process and Organisations:

Digital Press, 1989.
[6] A. Cockburn, “Structuring Use Cases with Goals,” , 1997.
[7] COMPASS, “COMPASS Software Engineering Handbook Part I - IV,” , 1998.
[8] COMPASS, “Guide to Economics,” 1998.
[9] COMPASS, “Volume I: Architecture Overview,” 1998.
[10] COMPASS, “Volume II:,” 1998.
[11] COMPASS, “Volume III,” 1998.
[12] COMPASS, “Volume IV: GL Extensions and Components,” 1998.
[13] COMPASS, “Volume V: Technology Viewpoint,” 1998.
[14] M. Fowler, Analysis Patterns: Reusable Object Models: Addison-Wesley, 1997.
[15] M. Fowler and K. Scott, UML distilled - applying the standard object modelling language”:

Addison Wesley, ISBN 0-201-32563, 1997.
[16] A. S. Hollander, E. L. Denna, and J. O. Cherrington, Accounting, Information Technology,

and Business Solutions: IRWIN, 1996.
[17] IASC, “International Accounting Standard,” 1997.
[18] Y. Ijiri, Management Goals and Accounting for Control, vol. 3. Amsterdam, Netherlands:

North-Holland, 1965.
[19] Y. Ijiri, Momentum Accounting and Triple-Entry Bookkeeping, vol. 31. Sarasota: American

Accounting Association, 1989.
[20] ISO/IEC, “JTC1/SC21 Open Systems Interconnection, Data Management and Open

Distributed Processing,” , USA (ANSI).
[21] ISO/IEC, “ISO/IEC 10746-1 Information technology - Basic reference model of Open

Distributed Processing - Part 1: Overview,” ISO ITU-T X.901 - ISO/IEC DIS 10746-1,
1996.

[22] ISO/IEC, “ISO/IEC 10746-2 Information technology - Open Distributed Processing -
Reference Model:Foundations,” , 1996.

[23] ISO/IEC, “ISO/IEC 10746-3 Information technology - Open Distributed Processing -
Reference Model: Architecture,” , 1996.

[24] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented Software
Engineering - A Use Case Driven Approach: Addison-Wesley, 1992.

[25] R. E. Jensen, Phantasmagoric Accounting, vol. 14. Sarasota: American Accounting
Association, 1976.

[26] H. Kilov, B. Rumpe, and I. Simmonds, “OOPSLA’97 Workshop on Object Oriented
Behavioural Semantic,” Institut fur Informatik der Technischen Universitat Munchen 1997.

[27] MAGMA, “Magma Software engineering handbook,” SINTEF, draft 1997.
[28] C. R. Malburg, Accounting for a new business: Bob Adams Inc, 1994.
[29] L. v. Mises, Human: Action: A Treatise on Economics: Regnery, 1963.
[30] T. J. Mowbray, “How to apply open systems to OO architectures,” in OBJECT Magazine,

1996.

 OMG General Ledger Facility

77

[31] T. J. Mowbray and R. C. Malveau, CORBA Design Patterns: John Wiley & Sons, Inc.,
1997.

[32] T. J. Mowbray and W. A. Ruh, Inside CORBA: John Wiley & Sons, 1997.
[33] T. J. Mowbray and R. Zahavi, The Essential CORBA: Systems Integration Using

Distributed Objects: John Wiley & Sons, Inc., 1995.
[34] OMG, “Common Facilities RFP3,” OMG Document Number 95.11.3, November 1995.
[35] OMG, “CorbaFacilities: Common Facilities Architecture,” Object Management Group

Revision 4.0, November 1995.
[36] OMG, “OMG Object Management Architecture Guide (OMA Guide), Revision 3.0,” ,

1995.
[37] OMG, “CORBAservices: Common Object Services Specification,” , 1997.
[38] OMG, “The Common Object Request Broker: Architecture and Specification, Revision

2.2,” Object Management Group Feb. 1998.
[39] OMG/UML, “UML Notation,” . http://www.rational.com/uml/html/notation, 1997.
[40] OMG/UML, “UML Semantics,” . http://www.rational.com/uml/html/semantics, 1997.
[41] R. Orfali and D. Harkey, Client/Server Programming with Java and CORBA: John Wiley &

Sons, Inc., 1997.
[42] T. Reenskaug, P. Wold, and O. A. Lehne, Working with Objects - The OOram Software

Engineering Method: Manning Publications, ISBN 1-884777-10-4, 1996.
[43] J. D. Shank and V. Govindarajan, “Strategic Cost Analysis: The Crown Cork and Seal

Case,” Journal of Cost Management, vol. 2, pp. pp 5-16, 1989.
[44] J. D. Shank and V. Govindarajan, “Strategic Cost Management and the Value Chain,”

Journal of Cost Management, vol. 5, pp. pp 5-21, 1992.
[45] M. Shaw and D. Garlan, Software Architecture - Perspectives On An Emerging Discipline:

Prentice-Hall, 1996.
[46] J. Siegel, CORBA Fundamentals and Programming: John Wiley & Sons, 1997.
[47] C. Szyperski, Component Software, Beyond Object-Oriented Programming: Addison-

Wesley, 1998.
[48] P. B. B. Turney, Common Cents: The ABC Performance Breakthrough: Hillsboro, 1991.

